Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Frontiers in pain research (Lausanne, Switzerland) ; 3, 2022.
Article in English | EuropePMC | ID: covidwho-2208017

ABSTRACT

Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.

2.
Cells ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2082270

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an infectious disease that has become a serious burden on global public health. This study screened and yielded specific nanobodies (Nbs) against SARS-CoV-2 spike protein receptor binding domain (RBD), following testing its basic characteristics. A nanobody phage library was established by immunizing a camel with RBD protein. After three rounds of panning, the positive colonies were screened by enzyme-linked immunosorbent assay (ELISA). By sequencing, four different sequences of nanobody gene fragments were selected. The four nanobody fusion proteins were expressed and purified, respectively. The specificity and affinity of the four nanobodies were identified by ELISA. Our results showed that an immune phage display library against SARS-CoV-2 has been successfully constructed with a library capacity of which was 4.7 × 108 CFU. The four purified nanobodies showed specific high-affinity binding SARS-CoV-2 S-RBD. Among these, the antigen binding affinity of Nb61 was more comparable to that of commercial rabbit anti-SARS-CoV-2 S-RBD antibodies. In sum, our study has obtained four nanobody strains against SARS-CoV-2 S-RBD with significant affinity and specificity, therefore laying an essential foundation for further research as well as the applications of diagnostic and therapeutic tools of SARS-CoV-2.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Humans , Rabbits , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing , SARS-CoV-2 , Camelus
3.
Proc Natl Acad Sci U S A ; 119(13): e2120691119, 2022 03 29.
Article in English | MEDLINE | ID: covidwho-1774042

ABSTRACT

Fatty acid composition in the Western diet has shifted from saturated to polyunsaturated fatty acids (PUFAs), and specifically to linoleic acid (LA, 18:2), which has gradually increased in the diet over the past 50 y to become the most abundant dietary fatty acid in human adipose tissue. PUFA-derived oxylipins regulate a variety of biological functions. The cytochrome P450 (CYP450)­formed epoxy fatty acid metabolites of LA (EpOMEs) are hydrolyzed by the soluble epoxide hydrolase enzyme (sEH) to dihydroxyoctadecenoic acids (DiHOMEs). DiHOMEs are considered cardioprotective at low concentrations but at higher levels have been implicated as vascular permeability and cytotoxic agents and are associated with acute respiratory distress syndrome in severe COVID-19 patients. High EpOME levels have also correlated with sepsis-related fatalities; however, those studies failed to monitor DiHOME levels. Considering the overlap of burn pathophysiology with these pathologies, the role of DiHOMEs in the immune response to burn injury was investigated. 12,13-DiHOME was found to facilitate the maturation and activation of stimulated neutrophils, while impeding monocyte and macrophage functionality and cytokine generation. In addition, DiHOME serum concentrations were significantly elevated in burn-injured mice and these increases were ablated by administration of 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), a sEH inhibitor. TPPU also reduced necrosis of innate and adaptive immune cells in burned mice, in a dose-dependent manner. The findings suggest DiHOMEs are a key driver of immune cell dysfunction in severe burn injury through hyperinflammatory neutrophilic and impaired monocytic actions, and inhibition of sEH might be a promising therapeutic strategy to mitigate deleterious outcomes in burn patients.


Subject(s)
Burns , Sepsis , Animals , Epoxide Hydrolases/metabolism , Humans , Immunity, Innate , Inflammation/drug therapy , Linoleic Acid/metabolism , Mice , Mice, Inbred C57BL , Phenylurea Compounds/pharmacology , Piperidines/pharmacology , Sepsis/drug therapy
4.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: covidwho-1450313

ABSTRACT

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.


Subject(s)
Eicosanoids/metabolism , Epoxide Hydrolases/biosynthesis , Macrophages/immunology , Neoplasm Metastasis/pathology , Receptors, Prostaglandin E, EP4 Subtype/biosynthesis , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/pathology , Cell Death/drug effects , Cell Line, Tumor , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/prevention & control , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phagocytosis/immunology , RAW 264.7 Cells
5.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1346501

ABSTRACT

17,18-Epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive epoxides produced from n-3 polyunsaturated fatty acid eicosapentaenoic acid and docosahexaenoic acid, respectively. However, these epoxides are quickly metabolized into less active diols by soluble epoxide hydrolase (sEH). We have previously demonstrated that an sEH inhibitor, t-TUCB, decreased serum triglycerides (TG) and increased lipid metabolic protein expression in the brown adipose tissue (BAT) of diet-induced obese mice. This study investigates the preventive effects of t-TUCB (T) alone or combined with 19,20-EDP (T + EDP) or 17,18-EEQ (T + EEQ) on BAT activation in the development of diet-induced obesity and metabolic disorders via osmotic minipump delivery in mice. Both T + EDP and T + EEQ groups showed significant improvement in fasting glucose, serum triglycerides, and higher core body temperature, whereas heat production was only significantly increased in the T + EEQ group. Moreover, both the T + EDP and T + EEQ groups showed less lipid accumulation in the BAT. Although UCP1 expression was not changed, PGC1α expression was increased in all three treated groups. In contrast, the expression of CPT1A and CPT1B, which are responsible for the rate-limiting step for fatty acid oxidation, was only increased in the T + EDP and T + EEQ groups. Interestingly, as a fatty acid transporter, CD36 expression was only increased in the T + EEQ group. Furthermore, both the T + EDP and T + EEQ groups showed decreased inflammatory NFκB signaling in the BAT. Our results suggest that 17,18-EEQ or 19,20-EDP combined with t-TUCB may prevent high-fat diet-induced metabolic disorders, in part through increased thermogenesis, upregulating lipid metabolic protein expression, and decreasing inflammation in the BAT.


Subject(s)
Anti-Obesity Agents/therapeutic use , Arachidonic Acids/therapeutic use , Benzoates/therapeutic use , Obesity/drug therapy , Phenylurea Compounds/therapeutic use , Adipogenesis , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Animals , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/pharmacology , Arachidonic Acids/administration & dosage , Arachidonic Acids/pharmacology , Benzoates/administration & dosage , Benzoates/pharmacology , Blood Glucose/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Diet, High-Fat , Epoxide Hydrolases/antagonists & inhibitors , Fatty Acids/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Obesity/etiology , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/pharmacology
6.
PLoS One ; 16(7): e0254367, 2021.
Article in English | MEDLINE | ID: covidwho-1304472

ABSTRACT

COVID-19 serological test must have high sensitivity as well as specificity to rule out cross-reactivity with common coronaviruses (HCoVs). We have developed a quantitative multiplex test, measuring antibodies against spike (S) proteins of SARS-CoV-2, SARS-CoV, MERS-CoV, and common human coronavirus strains (229E, NL63, OC43, HKU1), and nucleocapsid (N) protein of SARS-CoV viruses. Receptor binding domain of S protein of SARS-CoV-2 (S-RBD), and N protein, demonstrated sensitivity (94% and 92.5%, respectively) in COVID-19 patients (n = 53), with 98% specificity in non-COVID-19 respiratory-disease (n = 98), and healthy-controls (n = 129). Anti S-RBD and N antibodies appeared five to ten days post-onset of symptoms, peaking at approximately four weeks. The appearance of IgG and IgM coincided while IgG subtypes, IgG1 and IgG3 appeared soon after the total IgG; IgG2 and IgG4 remained undetectable. Several inflammatory cytokines/chemokines were found to be elevated in many COVID-19 patients (e.g., Eotaxin, Gro-α, CXCL-10 (IP-10), RANTES (CCL5), IL-2Rα, MCP-1, and SCGF-b); CXCL-10 was elevated in all. In contrast to antibody titers, levels of CXCL-10 decreased with the improvement in patient health suggesting it as a candidate for disease resolution. Importantly, anti-N antibodies appear before S-RBD and differentiate between vaccinated and infected people-current vaccines (and several in the pipeline) are S protein-based.


Subject(s)
Antibodies, Viral , COVID-19 , Chemokines , Coronavirus Nucleocapsid Proteins , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Adult , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Chemokines/blood , Chemokines/immunology , Coronavirus Nucleocapsid Proteins/blood , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Macaca mulatta , Male , Middle Aged , Phosphoproteins/blood , Phosphoproteins/immunology , Rabbits , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology
7.
Front Physiol ; 12: 663869, 2021.
Article in English | MEDLINE | ID: covidwho-1191700

ABSTRACT

Polyunsaturated fatty acids are metabolized into regulatory lipids important for initiating inflammatory responses in the event of disease or injury and for signaling the resolution of inflammation and return to homeostasis. The epoxides of linoleic acid (leukotoxins) regulate skin barrier function, perivascular and alveolar permeability and have been associated with poor outcomes in burn patients and in sepsis. It was later reported that blocking metabolism of leukotoxins into the vicinal diols ameliorated the deleterious effects of leukotoxins, suggesting that the leukotoxin diols are contributing to the toxicity. During quantitative profiling of fatty acid chemical mediators (eicosanoids) in COVID-19 patients, we found increases in the regioisomeric leukotoxin diols in plasma samples of hospitalized patients suffering from severe pulmonary involvement. In rodents these leukotoxin diols cause dramatic vascular permeability and are associated with acute adult respiratory like symptoms. Thus, pathways involved in the biosynthesis and degradation of these regulatory lipids should be investigated in larger biomarker studies to determine their significance in COVID-19 disease. In addition, incorporating diols in plasma multi-omics of patients could illuminate the COVID-19 pathological signature along with other lipid mediators and blood chemistry.

8.
Am J Pathol ; 190(9): 1782-1788, 2020 09.
Article in English | MEDLINE | ID: covidwho-726390

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) symptoms, including systemic inflammatory response and multisystem organ failure, are now affecting thousands of infected patients and causing widespread mortality. Coronavirus infection causes tissue damage, which triggers the endoplasmic reticulum stress response and subsequent eicosanoid and cytokine storms. Although proinflammatory eicosanoids, including prostaglandins, thromboxanes, and leukotrienes, are critical mediators of physiological processes, such as inflammation, fever, allergy, and pain, their roles in COVID-19 are poorly characterized. Arachidonic acid-derived epoxyeicosatrienoic acids could alleviate the systemic hyperinflammatory response in COVID-19 infection by modulating endoplasmic reticulum stress and stimulating the resolution of inflammation. Soluble epoxide hydrolase (sEH) inhibitors, which increase endogenous epoxyeicosatrienoic acid levels, exhibit potent anti-inflammatory activity and inhibit various pathologic processes in preclinical disease models, including pulmonary fibrosis, thrombosis, and acute respiratory distress syndrome. Therefore, targeting eicosanoids and sEH could be a novel therapeutic approach in combating COVID-19. In this review, we discuss the predominant role of eicosanoids in regulating the inflammatory cascade and propose the potential application of sEH inhibitors in alleviating COVID-19 symptoms. The host-protective action of omega-3 fatty acid-derived epoxyeicosanoids and specialized proresolving mediators in regulating anti-inflammation and antiviral response is also discussed. Future studies determining the eicosanoid profile in COVID-19 patients or preclinical models are pivotal in providing novel insights into coronavirus-host interaction and inflammation modulation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Betacoronavirus/pathogenicity , COVID-19 , Eicosanoids/pharmacology , Eicosanoids/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Humans , Pandemics , SARS-CoV-2
9.
Cancer Metastasis Rev ; 39(2): 337-340, 2020 06.
Article in English | MEDLINE | ID: covidwho-209469

ABSTRACT

Severe coronavirus disease (COVID-19) is characterized by pulmonary hyper-inflammation and potentially life-threatening "cytokine storms". Controlling the local and systemic inflammatory response in COVID-19 may be as important as anti-viral therapies. Endogenous lipid autacoid mediators, referred to as eicosanoids, play a critical role in the induction of inflammation and pro-inflammatory cytokine production. SARS-CoV-2 may trigger a cell death ("debris")-induced "eicosanoid storm", including prostaglandins and leukotrienes, which in turn initiates a robust inflammatory response. A paradigm shift is emerging in our understanding of the resolution of inflammation as an active biochemical process with the discovery of novel endogenous specialized pro-resolving lipid autacoid mediators (SPMs), such as resolvins. Resolvins and other SPMs stimulate macrophage-mediated clearance of debris and counter pro-inflammatory cytokine production, a process called inflammation resolution. SPMs and their lipid precursors exhibit anti-viral activity at nanogram doses in the setting of influenza without being immunosuppressive. SPMs also promote anti-viral B cell antibodies and lymphocyte activity, highlighting their potential use in the treatment of COVID-19. Soluble epoxide hydrolase (sEH) inhibitors stabilize arachidonic acid-derived epoxyeicosatrienoic acids (EETs), which also stimulate inflammation resolution by promoting the production of pro-resolution mediators, activating anti-inflammatory processes, and preventing the cytokine storm. Both resolvins and EETs also attenuate pathological thrombosis and promote clot removal, which is emerging as a key pathology of COVID-19 infection. Thus, both SPMs and sEH inhibitors may promote the resolution of inflammation in COVID-19, thereby reducing acute respiratory distress syndrome (ARDS) and other life-threatening complications associated with robust viral-induced inflammation. While most COVID-19 clinical trials focus on "anti-viral" and "anti-inflammatory" strategies, stimulating inflammation resolution is a novel host-centric therapeutic avenue. Importantly, SPMs and sEH inhibitors are currently in clinical trials for other inflammatory diseases and could be rapidly translated for the management of COVID-19 via debris clearance and inflammatory cytokine suppression. Here, we discuss using pro-resolution mediators as a potential complement to current anti-viral strategies for COVID-19.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Betacoronavirus/isolation & purification , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Cytokines/metabolism , Eicosanoids/immunology , Eicosanoids/metabolism , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , Respiratory Distress Syndrome/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL